MFGM – ważna struktura, o szczególnym znaczeniu dla rozwoju dzieci z niską masą urodzeniową i urodzonych przez cesarskie cięcie

MFGM – a structure of great importance for development of low birth weight infants and infants delivered by cesarean section

Dariusz Gruszfeld

Klinika Neonatologii, Patologii i Intensywnej Terapii Noworodka Instytutu „Pomnika – Centrum Zdrowia Dziecka”

Dariusz Gruszfeld
Klinika Neonatologii, Patologii i Intensywnej Terapii Noworodka
Instytut „Pomnik – Centrum Zdrowia Dziecka”
Al. Dzieci Polskich 20, 04-730 Warszawa
Tel: 22 815 71 30

Wpłynęło: 10.10.2019
Zaakceptowano: 08.11.2019
Opublikowano on-line: 15.11.2019

Cytowanie / Citation

Gruszfeld D. MFGM – ważna struktura, o szczególnym znaczeniu dla rozwoju dzieci z niską masą urodzeniową i urodzonych przez cesarskie cięcie.
Postępy Neonatologii 2019;25(2):95–101
doi: 10.31350/postepyneonatologii/2019/2/PN2019019

Wersja elektroniczna / Article ePDF

Streszczenie:
Mleko matki dostarcza niemowlęciu składników odżywczych niezbędnych do jego prawidłowego wzrostu i rozwoju, stanowiąc złoty standard karmienia w pierwszym roku życia. Jednym z głównych składników kobiecego pokarmu są tłuszcze, które stanowią podstawowe źródło energii i materiałów budulcowych dla szybko rosnącego organizmu, dostarczając kluczowych dla prawidłowego rozwoju niezbędnych nienasyconych kwasów tłuszczowych i witamin rozpuszczalnych w tłuszczach. Frakcja tłuszczów mleka matki jest wydzielana w postaci kuleczek otoczonych potrójną warstwą fosfolipidową (ang. milk fat globule membrane – MFGM), bogatą w białka, cholesterol, złożone lipidy i inne substancje bioaktywne. Najnowsze wyniki badań wskazują, że MFGM i jej składniki mogą warunkować różnice w tempie wzrostu i rozwoju dzieci karmionych piersią i mlekiem modyfikowanym. Korzyści płynące z suplementacji MFGM mogą być szczególnie istotne dla dzieci z małą masą urodzeniową. MFGM wywiera korzystny wpływ na rozwój ośrodkowego układu nerwowego i jelit oraz wspomaga odporność niemowląt. Wzbogacenie mleka modyfikowanego w MFGM lub jej składniki może prowadzić do szybszego rozwoju neurobehawioralnego wcześniaków oraz normalizacji ich mikroflory jelitowej. W modelu zwierzęcym MFGM hamuje procesy zapalne i poprawia integralność ścian jelita, przyczyniając się do zmniejszania częstości występowania martwiczego zapalenia jelit i łagodząc przebieg choroby. Pozytywny wpływ MFGM i jej składników na mikroflorę układu pokarmowego może mieć kluczowe znaczenie dla niemowląt urodzonych przez cesarskie cięcie, u których obserwuje się mniej zróżnicowaną florę jelitową niż u dzieci urodzonych drogami natury.

Słowa kluczowe: karmienie niemowląt, mleko modyfikowane, mała masa urodzeniowa, cesarskie cięcie, MFGM, sfingolipidy

Abstract:
Human milk contains a broad range of nutrients and bioactive compounds essential for optimal growth and development after birth, constituting the gold standard of infant nutrition. Milk lipids provide the infant not only with energy and building blocks for fast-growing organisms, but also with essential unsaturated fatty acids and lipid-soluble vitamins. Lipid fraction is secreted by a mammary gland in a unique manner, in which triglyceride droplets are surrounded by a phospholipid trilayer (milk fat globule membrane, MFGM), rich in proteins, cholesterol, sphingolipids and other bioactive compounds. Results of the recent studies suggest that MFGM and its constituents, which are traditionally absent in infant formulae, can be responsible for observed discrepancies in health and neurodevelopmental outcomes between breastfed- and formula-fed infants. MFGM, which is associated with faster neurodevelopment and improved immunity, can be particularly beneficial for low birth weight infants. Formulae enriched with MFGM or its constituents can contribute to better neurobehavioral outcomes and normalization of gut microbiota in preterm infants. In an animal model, MFGM inhibits inflammatory processes and improves intestinal integrity, reducing the risk of necrotizing enterocolitis, and attenuates disease severity. A positive impact of MFGM and its constituents on intestinal microbiota can be crucial for infants delivered by cesarean section, who are characterized with a distinct, less diverse pattern of bacterial composition when compared to infants delivered vaginally.

Key words: infant nutrition, infant formula, low birth weight, cesarean section, Milk Fat Globule Membrane, sphingolipids

  1. Lönnerdal B. Breast milk: a truly functional food. Nutrition 2000;16(7–8):509–511. doi: 10.1016/S0899–9007(00)00363–4
  2. Milner JA, Allison RG. The role of dietary fat in child nutrition and development: summary of an asns workshop. J Nutr 1999;129(11):2094–2105. doi: 10.1093/jn/129.11.2094
  3. Delplanque B, Gibson R, Koletzko B i wsp. Lipid quality in infant nutrition: current knowledge and future opportunities. J Pediatr Gastroenterol Nutr 2015;61(1):8–17. doi: 10.1097/MPG.0000000000000818
  4. Koletzko B. Human milk lipids. Ann Nutr Metab 2016;69(2):28–40. doi: 10.1159/000452819
  5. Martini M, Salari F, Altomonte I. The macrostructure of milk lipids: the fat globules. Crit Rev Food Sci Nutr 2016;56(7):1209–1221. doi: 10.1080/10408398.2012.758626
  6. Lien EL, Richard C, Hoffman DR. DHA and ARA addition to infant formula: current status and future research directions. Prostaglandins Leukot Essent Fatty Acid 2018;128:26–40. doi: 10.1016/
    j.plefa.2017.09.005
  7. O’Connor DL, Hall R, Adamkin D i wsp. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial. Pediatrics 2001;108(2):359–371. doi: 10.1542/peds.108.2.359
  8. Lapillonne A, Groh-Wargo S, Lozano Gonzalez CH i wsp. Lipid needs of preterm infants: updated recommendations. J Pediat 2013;162(3):S37–S47. doi: 10.1016/j.jpeds.2012.11.052
  9. Colombo J, Carlson SE, Cheatham CL i wsp. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am J Clin Nutr 2013;98(2):403–412. doi: 10.3945/ajcn.112.040766
  10. Birch EE, Castañeda YS, Wheaton DH i wsp. Visual maturation of term infants fed long-chain polyunsaturated fatty acid–supplemented or control formula for 12 mo. Am J Clin Nutr 2005;81(4):871–879. doi: 10.1093/ajcn/81.4.871
  11. Manley BJ, Makrides M, Collins CT i wsp. High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes. Pediatrics 2011;128(1):e71–e77. doi: 10.1542/peds.2010–2405
  12. Szajewska H, Socha P, Horvath A i wsp. Zasady żywienia zdrowych niemowląt. Zalecenia Polskiego Towarzystwa Gastroenterologii, Hepatologii i Żywienia Dzieci. Stand Med 2014;11:321–338
  13. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of a health claim related to DHA and contribution to normal brain development pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J 2016;12(10):3840. doi: 10.2903/j.efsa.2014.3840
  14. Kris-Etherton PM, Innis S, American Dietetic Association, Dietitians of Canada. Position of the American Dietetic Association and Dietitians of Canada: dietary fatty acids. J Am Diet Assoc 2007;107(9):1599–1611. doi: 10.1016/j.jada.2007.07.024
  15. The Food and Agriculture Organization of the United Nations (FAO). Fats and fatty acids in human nutrition. Report of an expert consultation. Food and Agriculture Organization of the United Nations, Rome, 2010, pp. 1–166
  16. Komisja Europejska. Rozporządzenie Delegowane Komisji 2016/127 z 25 września 2015 roku uzupełniające rozporządzenie Parlamentu Europejskiego i Rady (UE) nr 609/2013 w odniesieniu do szczegółowych wymogów dotyczących składu preparatów do początkowego żywienia niemowląt i preparatów do dalszego żywienia niemowląt oraz informacji na ich temat, a także w odniesieniu do informacji dotyczących żywienia niemowląt i małych dzieci
  17. Lopez C, Ménard O. Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids Surf B Biointerfaces 2011;83(1):29–41. doi: 10.1016/j.colsurfb.2010.10.039
  18. Heid HW, Keenan TW. Intracellular origin and secretion of milk fat globules. Eur J Cell Biol 2005;84(2–3):245–258. doi: 10.1016/
    j.ejcb.2004.12.002
  19. Dewettinck K, Rombaut R, Thienpont N i wsp. Nutritional and technological aspects of milk fat globule membrane material. Int Dairy J 2008;18(5):436–457. doi: 10.1016/J.IDAIRYJ.2007.10.014
  20. Zou X, Huang J, Jin Q i wsp. Lipid composition analysis of milk fats from different mammalian species: potential for use as human milk fat substitutes. J Agric Food Chem 2013;61(29):7070–7080. doi: 10.1021/jf401452y
  21. Fong BY, Norris CS, MacGibbon AKH. Protein and lipid composition of bovine milk-fat-globule membrane. Int Dairy J 2007;17(4):275–288. doi: 10.1016/J.IDAIRYJ.2006.05.004
  22. Ahn Y-J, Ganesan P, Kwak H-S. Composition, structure, and bioactive components in milk fat globule membrane. Korean J Food Sci Anim Resour 2011;31(1):1–8
  23. Lönnerdal B. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am J Clin Nut 2014;99(3):S712–S717. doi: 10.3945/ajcn.113.071993
  24. Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child 1973;48(10):757–767. doi: 10.1136/adc.48.10.757
  25. McJarrow P, Schnell N, Jumpsen J, Clandinin T. Influence of dietary gangliosides on neonatal brain development. Nutr Rev 2009;67(8):451–463. doi: 10.1111/j.1753-4887.2009.00211.x
  26. Palmano K, Rowan A, Guillermo R i wsp. The role of gangliosides in neurodevelopment. Nutrient. 2015;7(5):3891–3913. doi: 10.3390/nu7053891
  27. Timby N, Domellöf E, Hernell O i wsp. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am J Clin Nut. 2014;99(4):860–868. doi: 10.3945/ajcn.113.064295
  28. Gurnida DA, Rowan AM, Idjradinata P i wsp. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Hum De 2012;88(8):595–601. doi: 10.1016/j.earlhumdev.2012.01.003
  29. Veereman-Wauters G, Staelens S, Rombaut R i wsp. Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition 2012;28(7–8):749–752. doi: 10.1016/j.nut.2011.10.011
  30. Hernell O, Timby N, Domellöf M i wsp. Clinical benefits of milk fat globule membranes for infants and children. J Pediatr 2016;173(Suppl.):S60–S65. doi: 10.1016/j.jpeds.2016.02.077
  31. Timby N, Hernell O, Vaarala O i wsp. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J Pediatr Gastroenterol Nutr 2015;60(3):384–389. doi: 10.1097/MPG.0000000000000624
  32. Liao Y, Alvarado R, Phinney B i wsp. Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. J Proteome Re 2011;10(8):3530–3541. doi: 10.1021/pr200149t
  33. Hettinga K, van Valenberg H, de Vries S i wsp. The host defense proteome of human and bovine milk. Uversky VN, ed. PLoS One 2011;6(4):e19433. doi: 10.1371/journal.pone.0019433
  34. Clare DA, Zheng Z, Hassan HM i wsp. Antimicrobial properties of milk fat globule membrane fractions. J Food Prot 2008;71(1):126–133. doi: 10.4315/0362-028x-71.1.126
  35. Sprong R, Hulstein MF, van der Meer R. Bovine milk fat components inhibit food-borne pathogens. Int Dairy J 2002;12(2–3):209–215. doi: 10.1016/S0958-6946(01)00139-X
  36. Fuller KL, Kuhlenschmidt TB, Kuhlenschmidt MS i wsp. Milk fat globule membrane isolated from buttermilk or whey cream and their lipid components inhibit infectivity of rotavirus in vitro. J Dairy Sci 2013;96(6):3488–3497. doi: 10.3168/jds.2012-6122
  37. Newburg DS, Peterson JA, Ruiz-Palacios GM i wsp. Role of human-milk lactadherin in protection against symptomatic rotavirus infection. Lancet 1998;351(9110):1160–1164. doi: 10.1016/S0140-6736(97)10322-1
  38. Sheng YH, Triyana S, Wang R i wsp. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immuno 2013;6(3):557–568. doi: 10.1038/mi.2012.98
  39. Zavaleta N, Kvistgaard AS, Graverholt G i wsp. Efficacy of a complementary food enriched with a milk fat globule membrane protein fraction on diarrhea, anemia and micronutrient status in infants. J Pediatr Gastroenterol Nutr 2011;53(5):1. doi: 10.1097/MPG.0b013e318225cdaf
  40. Nilsson Å. Role of sphingolipids in infant gut health and immunity. J Pediatr 2016;173(Suppl.):S53–S59. doi: 10.1016/j.jpeds.2016.02.076
  41. Jiménez-Flores R, Brisson G. The milk fat globule membrane as an ingredient: why, how, when? Dairy Sci Technol 2008;88(1):5–18. doi: 10.1051/dst:2007005
  42. Rueda R. The role of dietary gangliosides on immunity and the prevention of infection. Br J Nutr 2007;98(Suppl. 1):S68–S73. doi: 10.1017/S0007114507832946
  43. Lis-Kuberka J, Orczyk-Pawiłowicz M. Sialylated oligosaccharides and glycoconjugates of human milk. The impact on infant and newborn protection, development and well-being. Nutrients 2019;11(2):306. doi: 10.3390/nu11020306
  44. Raymond A, Ensslin MA, Shur BD. SED1/MFG-E8: A Bi-Motif protein that orchestrates diverse cellular interactions. J Cell Biochem 2009;106(6):957–966. doi: 10.1002/jcb.22076
  45. Civra A, Giuffrida MG, Donalisio M i wsp. Identification of equine lactadherin-derived peptides that inhibit rotavirus infection via integrin receptor competition. J Biol Chem 2015;290(19):12403–12414. doi: 10.1074/jbc.M114.620500
  46. Lee H, Zavaleta N, Chen S-Y i wsp. Effect of bovine milk fat globule membranes as a complementary food on the serum metabolome and immune markers of 6-11-month-old Peruvian infants. npj Sci Food 2018;2(1):6. doi: 10.1038/s41538-018-0014-8
  47. Rueda R, Sabatel JL, Maldonado J i wsp. Addition of gangliosides to an adapted milk formula modifies levels of fecal Escherichia coli in preterm newborn infants. J Pediatr 1998;133(1):90–94.
  48. Nakano T, Sugawara M, Kawakami H. Sialic acid in human milk: composition and functions. Acta Paediatr Taiwan 2001;42(1):11–17.
  49. Bhinder G, Allaire JM, Garcia C i wsp. Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Sci Rep 2017;7(1):45274. doi: 10.1038/srep45274
  50. Horta BL, Loret de Mola C, Victora CG. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Paediatr 2015;104(467):30–37. doi: 10.1111/apa.13133
  51. Baars A, Oosting A, Engels E i wsp. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. Br J Nutr 2016;115(11):1930–1937. doi: 10.1017/S0007114516001082
  52. Timby N, Lönnerdal B, Hernell O i wsp. Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatr Res 2014;76(4):394–400. doi: 10.1038/pr.2014.110
  53. Grip T, Dyrlund TS, Ahonen L i wsp. Serum, plasma and erythrocyte membrane lipidomes in infants fed formula supplemented with bovine milk fat globule membranes. Pediatr Res 2018;84(5):726–732. doi: 10.1038/s41390-018-0130-9
  54. He X, Parenti M, Grip T i wsp. Metabolic phenotype of breast-fed infants, and infants fed standard formula or bovine MFGM supplemented formula: a randomized controlled trial. Sci Rep 2019;9(1):339. doi: 10.1038/s41598-018-36292-5
  55. Walsh V, Brown JVE, Askie LM i wsp. Nutrient-enriched formula versus standard formula for preterm infants. Cochrane Database Syst Rev 2019;(7):CD004204. doi: 10.1002/14651858.CD004204
  56. Bauer J, Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin Nutr 2011;30(2):215–220. doi: 10.1016/j.clnu.2010.08.003
  57. Bitman J, Wood L, Hamosh M i wsp. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am J Clin Nutr 1983;38(2):300–312. doi: 10.1093/ajcn/38.2.300
  58. Bokor S, Koletzko B, Decsi T. Systematic review of fatty acid composition of human milk from mothers of preterm compared to full-term infants. Ann Nutr Metab 2007;51(6):550–556. doi: 10.1159/000114209
  59. Shoji H, Shimizu T, Kaneko N i wsp. Comparison of the phospholipid classes in human milk in Japanese mothers of term and preterm infants. Acta Paediatr 2006;95(8):996–1000. doi: 10.1080/08035250600660933
  60. Tanaka K, Hosozawa M, Kudo N i wsp. The pilot study: sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain Dev 2013;35(1):45–52. doi: 10.1016/j.braindev.2012.03.004
  61. Neu J, Walker WA. Necrotizing Enteroc olitis. N Engl J Med 2011;364(3):255–264. doi: 10.1056/NEJMra1005408
  62. Wang Y, Hoenig JD, Malin KJ i wsp. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enteroco litis. ISME J 2009;3(8):944–954. doi: 10.1038/ismej.2009.37
  63. Arrieta M-C, Stiemsma LT, Amenyogbe N, i wsp. The intestinal microbiome in early life: health and disease. Front Immunol 2014;5:427. doi: 10.3389/fimmu.2014.00427
  64. Sullivan S, Schanler RJ, Kim JH i wsp. An exclusively human milk-based diet is associated with a lower rate of necrotizing enteroc olitis than a diet of human milk and bovine milk-based products. J Pediatr 2010;156(4):562–567.e1. doi: 10.1016/j.jpeds.2009.10.040
  65. Quigley M, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev 2014;(4):CD002971. doi: 10.1002/14651858.CD002971.pub3
  66. Huang S, Wu Z, Liu C i wsp. Milk fat globule membrane supplementation promotes neonatal growth and alleviates inflammation in low-birth-weight mice treated with lipopolysaccharide. Biomed Res Int 2019;2019:4876078. doi: 10.1155/2019/4876078
  67. Zhang D, Wen J, Zhou J i wsp. Milk Fat Globule Membrane Ameliorates Necrotizing Enteroco litis in Neonatal Rats and Suppresses Lipopolysaccharide-Induced Inflammatory Response in IEC-6 Enterocytes. J Parenter Enter Nutr 2019;43(7):863–873. doi: 10.1002/jpen.1496
  68. Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nut. 1999;69(5):1035s–1045s. doi: 10.1093/ajcn/69.5.1035s
  69. Dominguez-Bello MG, Costello EK, Contreras M i wsp. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010;107(26):11971–11975. doi: 10.1073/pnas.1002601107
  70. Jakobsson HE, Abrahamsson TR, Jenmalm MC i wsp. Decreased gut microbiota diversity, delayed bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 2014;63(4):559–566. doi: 10.1136/gutjnl-2012-303249
  71. Korpela K, Salonen A, Vepsäläinen O i wsp. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiom 2018;6(1):182. doi: 10.1186/s40168-018-0567-4
  72. Mesquita DN, Barbieri MA, Goldani HAS i wsp. Cesarean section is associated with increased peripheral and central adiposity in young adulthood: cohort study. PLoS One 2013;8(6):e66827. doi: 10.1371/journal.pone.0066827
  73. Gibbs BG, Forste R. Socioeconomic status, infant feeding practices and early childhood obesity. Pediatr Obes 2014;9(2):135–146. doi: 10.1111/j.2047-6310.2013.00155.x
  74. Penders J, Stobberingh EE, van den Brandt PA i wsp. The role of the intestinal microbiota in the development of atopic disorders. Allergy 2007;62(11):1223–1236. doi: 10.1111/j.1398-9995.2007.01462.x
  75. Michail S, Durbin M, Turner D i wsp. Alterations in the gut microbiome of children with severe ulcerative c olitis. Inflamm Bowel Dis 2012;18(10):1799–1808. doi: 10.1002/ibd.22860
  76. Hsiao EY, McBride SW, Hsien S i wsp. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013;155(7):1451–1463. doi: 10.1016/
    j.cell.2013.11.024

Konflikt interesów: nie zgłoszono.
Potential conflicts of interest: no conflicts.

MAVIPURO POLSKA Sp. z o.o.
ul. Wyspowa 2/13
03-687 Warszawa
Tel.: +48 22 110 03 81
Fax:   +48 22 378 28 51
e-mail: kontakt@mavipuro.pl

 

POLITYKA PRYWATNOŚCI

 

 

PIERWSZE MAZOWIECKIE SPOTKANIE MIKROBIOLOGÓW I EPIDEMIOLOGÓW


» PROGRAM


» REJESTRACJA